Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(4): 38, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656280

RESUMO

Purpose: Fuchs endothelial corneal dystrophy (FECD) is characterized by Descemet's membrane (DM) abnormalities, namely an increased thickness and a progressive appearance of guttae and fibrillar membranes. The goal of this study was to identify abnormal extracellular matrix (ECM) proteins expressed in FECD DMs and to evaluate their impact on cell adhesion and migration. Methods: Gene expression profiles from in vitro (GSE112039) and ex vivo (GSE74123) healthy and FECD corneal endothelial cells were analyzed to identify deregulated matrisome genes. Healthy and end-stage FECD DMs were fixed and analyzed for guttae size and height. Immunostaining of fibronectin, tenascin-C, osteopontin, and type XIV collagen was performed on ex vivo specimens, as well as on tissue-engineered corneal endothelium reconstructed using healthy and FECD cells. An analysis of ECM protein expression according to guttae and fibrillar membrane was performed using immunofluorescent staining and phase contrast microscopy. Finally, cell adhesion was evaluated on fibronectin, tenascin-C, and osteopontin, and cell migration was studied on fibronectin and tenascin-C. Results: SPP1 (osteopontin), FN1 (fibronectin), and TNC (tenascin-C) genes were upregulated in FECD ex vivo cells, and SSP1 was upregulated in both in vitro and ex vivo FECD conditions. Osteopontin, fibronectin, tenascin-C, and type XIV collagen were expressed in FECD specimens, with differences in their location. Corneal endothelial cell adhesion was not significantly affected by fibronectin or tenascin-C but was decreased by osteopontin. The combination of fibronectin and tenascin-C significantly increased cell migration. Conclusions: This study highlights new abnormal ECM components in FECD, suggests a certain chronology in their deposition, and demonstrates their impact on cell behavior.


Assuntos
Movimento Celular , Endotélio Corneano , Fibronectinas , Distrofia Endotelial de Fuchs , Osteopontina , Tenascina , Humanos , Tenascina/metabolismo , Tenascina/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Osteopontina/metabolismo , Osteopontina/genética , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Idoso , Adesão Celular , Células Cultivadas , Feminino , Masculino , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Lâmina Limitante Posterior/metabolismo , Lâmina Limitante Posterior/patologia
2.
Front Bioeng Biotechnol ; 11: 1269385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840667

RESUMO

Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA